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Bolshoj 61, Vasil. Ostrov, 199178, Leningrad, USSR 

Received 29 March 1989 

Abstract. Analysis is performed of general features of schemes for calculating the topologi- 
cal charges of heterophase gauge field configurations and order prameter configurations. 
The feasibility is substantiated of using the results and methods of the theory of topologically 
non-trivial order parameter configurations for studying complicated heterophase gauge 
field configurations and vice versa. Structures are revealed of topological charges for 
string-like configurations of the order parameter which contain ball defects in their cores, 
as well as for string-like configurations of gauge fields, containing ball monopoles in their 
cores. Within the framework of the topological approach, string-like defects are studied 
in superfluid 3He and nematic liquid crystals, as well as string-like configurations of gauge 
fields in the gauge theory with SU(3) symmetry. 

1. Introduction 

Gauge field theory is an effective instrument for describing the behaviour of a wide 
class of physical systems: elementary particle fields (see, e.g., [ l ,  2]), solids containing 
dislocations and disclinations [3,4], amorphous metals [5-71, oxide glasses [8], blue 
phases of liquid crystals [6], magnetics [4], nematic liquid crystals and superfluid 
liquids [4,9, 101. Special attention is usually paid to the study of topologically non- 
trivial gauge field configurations (GFC), each representing (according to the topological 
laws) a stable excited state (‘defect’) of the physical system described by the gauge 
theory. Since topologically non-trivial GFC are stable, they are long lived and exert a 
considerable effect on the behaviour of physical systems. 

Topologically non-trivial heterophase GFC are of great interest in Yang-Mills-Higgs 
gauge theories. Each such configuration is stable and describes the behaviour of a 
physical system which can be divided into several phases, spatial or spacetime regions 
characterised by different gauge symmetries. Examples of heterophase GFC are 
’t Hooft-Polyakov ball monopoles (figure 1) and string-like configurations (figure 2) 
(see, e.g., [ l ,  2, 11-13]), as well as GFC of complicated form: walls terminating in strings 
[ 141, strings terminating in monopoles [ 151, loop strings [ 151, strings with internal ball 
monopoles [16] and loop monopoles [17]. 

Related objects for heterophase GFC are heterophase order parameter configurations 
(OPC) in ordered media with a variable degeneracy space?, namely the space characteris- 
ing the medium order parameter symmetries (see reviews [ 18-22]). Each topologically 
non-trivial heterophase OPC is stable and describes the behaviour of the ordered 
medium, which can be divided into several phases, namely space regions characterised 

7 The degeneracy space is often also called the order parameter space or the manifold of internal states. 
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Figure 1. The two-phase configuration which is the 
't Hooft-Polyakov monopole (respectively ball 
defect). The first phase is the ball-like core charac- 
terised by a local G,  symmetry (respectively 
degeneracy space V ) .  The second phase charac- 
terised by a Iota1 G2 symmetry (respectively 
degeneracy spat: V )  occupies the region outside the 
ball. G 2 c  G, ( V c  V ) .  

Figure 2. The two phase configuration which is the 
string-like GFC (line defect). The first phase is the 
string cylindrical core characterised by a local G ,  
symmetry (degeneracy space V ) .  The core is 
enveloped by the second phase characterised by a 
lofal Gz symmetry (degeneracy space V ) .  Gz c G, 
( V C  V ) .  

by different degeneracy spaces (DS). As examples of heterophase OPC we can cite 
string-like and ball defects [23] (figures 1 and 2), surface defects [24], linear and plane 
solitons [25,26] and loop defects [27] encountered in magneto-ordered media like 
liquid crystals and superfluid systems. 

The main characteristics of GFC and OPC are their topological charges, which 
determine the stability of configurations, properties of configurations in case of transfor- 
mations of their form and phase transitions, laws of merging and separation of 
configurations [ l ,  2, 11-13, 18-22]. Calculation methods of topological charges of 
complicated heterophase OPC are now well developed [20-221, which cannot be said 
for the topological theory of complicated heterophase GFC. 

In the present paper an analysis is performed of general features of schemes for 
calculating the topological charges of heterophase GFC and OPC, and on the basis of 
this analysis we establish that the results and methods of the theory of topologically 
non-trivial heterophase OPC can be used for studying complicated heterophase GFC 

(section 2). Structures are revealed of topological charges for string-like OPC containing 
ball defects in their cores, as well as for string-like GFC with intracore ball monopoles 
(section 3). Topological analysis is performed of string-like OPC in superfluid 3He-A 
and nematic liquid crystals, as well as of string-like GFC in the gauge theory with 
broken SU(3) symmetry (section 3). 

2. General features of schemes for calculating topological charges of heterophase 
gauge field configurations and heterophase order parameter configurations 

The main intention of the present section is to reveal the general features of schemes 
of topological classification (determining a set of topological charges) of heterophase 
GFC and heterophase OPC. Firstly, we shall consider heterophase GFC. For the topo- 
logical analysis of such configurations it is convenient to use the fibre bundle formalism 
which is a geometric analogue of gauge theory (see pioneer work [28] and [2, 11-13]). 
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Within the framework of the geometric approach each GFC is juxtaposed with a fibre 
bundle, and the problem of classification of GFC is reduced to that of fibre bundles 
[2,11-13,281. 

Let us consider the stationary Yang-Mills- Higgs theory with symmetry breakdown 
of the type G I  + G, + * . + G,, where gauge groups G, are Lie groups and G, c G,-, 

* c G I .  In the general case, the heterophase GFC in such a theory describes a physical 
system, which can be divided into phases which are three-dimensional space regions 
B, ( i  = 1, . . . , n )  such that (a )  the union of the regions B, is a three-dimensional region 
B, where the gauge theory is determined: U:=, B , = B ;  (b) the intersection of two 
regions B,, BJ is either empty or a two-dimensional region A,, ; (c) the behaviour of 
the system in region B, is characterised by the local GI symmetry. In accordance with 
the principles of the geometric interpretation of gauge theory [2, 11, 12,281, the 
classification of the above heterophase GFC is identical to that of those principal fibre 
bundles 6 on base B, which on regions B, (B, c B, i = 1 , .  . . , n )  are reduced to fibre 
bundles 6 , ( B , ,  G,) with the structural group G, : 

t I B ,  = t , (G, ,  4). (1) 

For instance, for the ’t Hooft-Polyakov monopole (figure 1) the region B represents 
a three-dimensional Euclidean space R3 = B ,  U B2 (where B, is the ball (the monopole 
core) and B2 is the region outside the ball); moreover, the fibre bundle 6 on each 
region B, ( i  = 1,2)  represents the GI bundle &(G,,  B,). A similar ‘dissection’ of the 
fibre bundle 6 also takes place for the string-like configuration (figure 2), provided 
E = 3’ = B, U B 2 ,  where B, denotes the infinite cylinder (the string core) and B2 the 
region outside the cylinder. 

The classification of the principal G bundles on base X (‘monphase fibre bundles’) 
is identical to the homotopic classification of maps X + BG,  where B, is the base of 
the universal G bundle EG (for instance, [29-311). The classification of the fibre 
bundles 6 ‘composed’ of several fibre bundles t,, is not reduced, generally speaking, 
to independent procedures of classifying the fibre bundles &, i.e. procedures of 
calculating homotopic classes of maps B, + B G , ,  where B G ,  are the bases of universal 
G ,  bundles. Additionally, it is necessary to take into account the conditions imposed 
by the continuous transition of fibre bundles 6, into each other on the boundaries 
between them, i.e. on the ‘interphase’ boundaries A,J. Taking into account this condition 
of ‘gluing the phases’ is the main specific feature of the mathematical scheme for 
classifying the fibre bundles 6 which correspond to heterophase GFC. 

Let us consider now the classification scheme of fibre bundles 6 corresponding to 
two-phase GFC. On regions B ,  , E ,  c B each such fibre bundle 6 is reduced to the fibre 
bundles &(GI ,  B,) and t 2 ( G 2 .  B,), respectively (here B is the base of fibre bundle 6, 
G2 c GI).  At the boundary A I 2  between regions B, and B2 the condition of continuous 
reduction of the GI bundle to the G, bundle is satisfied. This condition is equivalent 
to the existence of a homotopically commutative diagram [29]: 

where Bo, are the bases of universal G,-bundles EG,, and the map t o :  BG2+ B G ,  is 
induced by embedding universal fibre bundles: EG,+ E G I .  In this way, for the 
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classification of fibre bundles &calculation of the set A, of equivalence classes of 
fibre bundles &it is necessary to classify fibre bundles t , ,  & under the condition (2). 
Since the classification of G, bundles 6, is identical to the homotopic classification of 
maps 

f; : Bl 4 BG, 

A = Ac, X Ac2 

( 3 )  

(4) 

the set A, is equal to the product of two sets: 

where A,, is a set of homotopic classes of maps f; under condition ( 2 ) .  
In studying heterophase OPC in ordered media, one encounters the problem of the 

homotopic classification of maps also being like the maps .f; under a condition like 
(2). So, a two-phase OPC is characterised by the map [ 2 7 ] :  

g, : MI + V 

g 2 :  M 2 +  i? ( 6 )  

( 5 )  

which is continuously extended on the map 

Here M ,  ( M 2 )  denotes the spatial region occupied by the first (respectively, second) 
phase of the ordered medium, V (  V) the degeneracy space characterising internal 
symmetries of the first (respectively, second) phase, 3~ V. For the sake of definiteness, 
we shall consider M I ,  M 2  to be three-phase regions. In order that there be a continuous 
extension of the map g, on the map g,, it is necessary that there exist the homotopically 
commutative diagram 

(7) 

where A,, is the 'interphase' boundary and embedding io: T+ V describes the phase 
transition in the ordered medium. 

From the above discussion (see formulae (2), (3), ( 5 ) - ( 7 ) )  there follows a formal 
equivalence (say, equivalence I)  of the problems of topological classifying two-phase 
GFC and of classifying two-phase OPC. In the case of GFC, phases B, serve as phases 
M ,  of the ordered medium, while spaces BG, and BG, serve as degeneracy spaces V,  

Now we shall introduce the concept of related OPC and GFC. Two-phase OPC and 
GFC are termed related if the phases MI of OPC and the phases B, of GFC are 
homeomorphic: 

of the ordered medium, respectively. 

MI h:m B, i = l , 2 .  (8) 
For instance, for the 't Hooft-Polyakov monopole the ball defect is the related OPC 

(see figure l ) ,  while by the related OPC for the string-like GFC we mean the string-like 

defect (see figure 2 ) .  If M ,  - B, ( i  = 1,2), according to the homotopic topology 
concepts [ 3 0 ] ,  terms for sets of homotopic classes of the maps B,+ BG, ( i =  1 ,2 )  
satisfying (2) and terms for sets of homotopic classes of maps MI + V, M ,  + 3 satisfying 
(7) ,  coincide exactly under the transformations 

hom 

V -  Bo, 3 0  BG*. (9) 
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Hence, the structure of the topological charge sets for two-phase GFC coincides exactly 
with that of OPC (related to the above-mentioned GFC) under the transformations (9). 

Equivalence I, the concept of related GFC and OPC, and  similarity of topological 
charge set structures of related GFC and OPC is directly generalised to the case of an  
arbitrary number of heterophase configuration phases. 

Usually (for instance, [23-27,32,33])  the sets of topological charges for two-phase 
opc-which are the sets of homotopic classes of the maps ( 5 ) ,  (6)  satisfying (7)- 
represent cohomology groups, whose coefficients are homotopic groups 

or  their subgroups of type 
n s  V) n,i 3 )  (10) 

Im(nI , (  3 )  IT,( v ) )  Ker(IT,( q)  2 I I r (  V ) )  

HA v ) / I m ( n , (  q)  2 n,( V I )  
( 1 1 )  

where homomorphisms G r  are induced by embedding io: ?+ V. Due to the equivalence 
I, heterophase GFC are classified by topological charges, which are elements of groups 
( lo) ,  ( l l ) ,  provided (9). To reduce the calculation procedure of such groups to a 
convenient form we shall use the properties of the following commutative diagram 
[3 11, consisting of two exact sequences of homotopic groups and their homomorphisms: 

nr(Gi)  + n r ( E ~ , )  + n,(B,,) * nr-i(Gi) -+. 
Here homomorphisms cp and 8 are induced by the embedding 
n , ( E , , )  = 1 by definition, then [31]: 

J U B , , )  = nr-l(Gt). 

E,, - E,:. Since 

(13)  
From (13)  and the condition of commutability of diagram (12) ,  we find 

Ker c p r  = Ker (14)  

Im c p r  = Im (15)  

n,(B,,)/Im c p r  = L l ( G 1 ) / I m  LI.  (16) 

and hence 

Because of the equivalence I, as well as from (9), (13)-(  16) it follows that for topological 
charge sets of two-phase GFC it is feasible to use the formulae determining the 
topological charge sets of the ‘related’ (see the condition (8)) two-phase OPC, provided 
the following change of groups is performed: 

n , ( V )  + nr-i(Gi) n,i 3)  + K I ( G 2 )  (17) 
and  the change of the corresponding homomorphisms of these groups. The formula 
(17) also directly generalises to the case of n-phase systems ( n  2 1 ) .  

So, the general calculation scheme of topological charges for heterophase GFC has 
common features with the topological analysis scheme of heterophase OPC. Hence, it 
is feasible to make effective use of the methods and  results of the theory of topological 
excitations in ordered media for studying characteristics of topologically non-trivial 
heterophase GFC, and vice versa. 
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3. Topological charges of string-like configurations in superfluid 3 H e A ,  biaxial 
nematic liquid crystals and gauge SU(3) theory 

The present section deals with the topological analysis, performed using concepts 
developed above, of string-like OPC and GFC containing ball excitations in their cores. 

Consider a line (string-like) defect with intracore ball defects (figure 3) in a 
condensed medium characterised by the variable DS which is assumed to vary as follows 

w+ v-+ v (0c v c  W ) .  (18) 

The reasons for and examples of such behaviour of the ordered media DS are discussed 
in [20-221. A linear defect (figure 3) is a three-phase OPC. The cores of the ball defects 
are a phase, characterised by the DS W, the string core is characterised by DS V and 
the region outside the string core is characterised by DS 

* 

After son analysis, Carrie 

Figure 3. String-like defect (GFC) with intracore ball 
defects (monopoles), which is a three-phase 
configuration. W, V, V are degeneracy spaces 
characterising the order-parameter symmetries of a 
condensed medium within the ball defect cores, 
within the string core and outside the string core, 
respectively. (G , ,  G 2 ,  G, are gauge groups charac- 
terising local symmetries of a system within the ball 
monopole cores, within the string core and outside 
the string core, respectively.) 

out by topological methods developed in [27,33], we 

in which case the homeomorphisms &, 4 belong to the corresponding exact sequences 
of homotopy groups and their homeomorphisms, while for the subcharges Bi the 
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following additional condition should be satisfied: 

&b+J1 E Ker(K(  V)  -+ n,( W ) )  i = 1, .  . . , m. (23) 

Subcharge Ol' describes the features of a linear defect in the ordered medium with DS 

?, inherent in the OPC under consideration. Each subcharge p, characterises the order 
parameter distribution on that part of the linear defect core situated between the 
( i  - 1)th and ith ball defects (figure 3). Each subcharge characterises the distribution 
of the order parameter in the core proper of the ith ball defect. 

Now we proceed to discussing the gauge theory with the symmetry breakdown: 

G l+G,+G,  (G, c Gz c Gi 1. (24) 

In such a theory, GFC related to a linear defect with internal ball defects is represented 
by a string-like GFC containing ball monopoles in  its core (figure 3). Such a configur- 
ation is a three-phase GFC. The monopole cores are a phase characterised by the gauge 
GI symmetry, the string core by Gz symmetry, and the region outside the string core 
by G, symmetry (figure 3). 

To determine the structure of the topological charge of the CFC in question, we 
shall use the analogy between the calculation schemes for topological charges of OPC 

and GFC developed in section 2. In accordance with this analogy, in the case of 
three-phase systems (ordered media with DS variable as (18), and gauge field systems 
with the symmetry breakdown (24)) the sets of topological charges of related (see the 
condition (8))  OPC and CFC coincide exactly under the changes of groups: 

n r ( W )  +, n r -  1 (G 1)  n,( V ) e n , - i ( G 2 )  nr( Q)-nr-l(G,) ( 2 5 )  

and corresponding changes of the homomorphisms of these groups. 
Due to the above analogy between topological analysis schemes for OPC and CFC, 

one finds the topological charge of string-like GFC with m intracore ball monopoles 
to be the set 

(a, P I ,  * , P m t l ,  ~ 1 ,  * .  9 Y m )  (26) 

where the subcharges a, P I ,  yI are defined by the formulae (20)-(23), provided the 
change (25) comes into play. 

In doing so, those properties of a string-like configuration in a system with G, 
gauge symmetry that are inherent to CFC in question are characterised by the subcharge 
a. Each subcharge P ,  describes the gauge field distribution on that part of the string 
core situated between the ( i  - 1)th and ith ball monopoles. The gauge field distribution 
in the core of the ith monopole is characterised by the subcharge yI. 

Let us study examples of string-like configurations with intracore ball excitations 
in condensed media and the gauge SU(3) theory. 

(A) Superfluid 'He-A in U magneticjeld. In discussing a line defect with intracore 
ball defects one finds that the order-parameter symmetries are different in regions 
outside and inside the line defect core and inside the ball defect cores. These symmetries 
are characterised by the following DS 

?= SI x s' V = SO(3) W =  (S2 x S 0 ( 3 ) ) / Z 2  (27) 
respectively. Here S' denotes the r-dimensional sphere, SO(3) the group of three- 
dimensional proper rotations, Z2 = ( 1, - 1 )-the two-element group. 

After some calculations using the formulae (19)-(22), (27) we reveal the topological 
charge of the line defect with m intracore ball defects in superfluid ,He-A (placed in 
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a magnetic field) as being the set (zl  , , , . , z,+J of integers. In this event the subcharge 
ci = ( z l ,  z 2 )  (provided the sum z1 + z2 is even), each subcharge +, = z,,~ (i = 1, . . . , m), 
and the subcharges bl are trivial. ( In  analogy with particle-like solitons [34], each ball 
defect characterised by trivial subcharges b, can be unstable with respect to changes 
in the scales of the defect core. The question of what mechanism causes the stability 
of the defect scales is beyond the scope of the present paper.) 

(B)  Superfluid 'He-A placed in a strong magneticjeld. For a line defect with m 
internal ball defects the DS characterising the system phases are as follows: 

Q = SI x s2 V =  (SI = S0(3 ) ) /Zz  W = (S2 x S0(3 ) ) /Zz .  (28) 

Topological analysis based on the formulae ( 19)-(22), (28) indicates the topological 
charge of the discussed defect to be the set ( z1 , . . . , zmtI )  of integers. Here the subcharge 
ci = z I ,  the subcharges TI = z,,~ ( i  = 1, . . . , m), and PI are trivial. 

(C) Biaxial nematic liquid crystal. Internal symmetries of biaxial nematics are 
described by the DS e= S3/Q, where Q = {*I, *iux, *iu,, *iu,} is the group of quater- 
nions; I is the unit 2 x 2 matrix and ux, U,, U; are the Pauli matrices [18-221. In a 
biaxial nematic four types of topologically stable line defects/disclinations can exist, 
which are characterised by non-trivial conjugacy classes of elements of the group Q 
[18-221: 

CO = ( -I}  C, = { *iux} C,  = ( i iu ,}  Cz = {*iuz}. (29) 

In doing this, C, and C, disclinations are line singularities, whereas CO and C, 
disclinations have non-singular string-like cores, in which a uniaxial nematic state of 
the liquid crystal is realised [35,36], being characterised by the DS V =  S 2 / Z 2 .  In such 
string-like cores the experimental evidence [36] indicates that the ball defects are 
present, the cores of which are characterised by the DS W = S4 [21]. 

Topological analysis of string-like disclinations with m intracore ball defects reveals 
the disclination charge to be the set (6,  zl,. . . , z,+~), in which case the subcharge C; 
is e, or C,, the subcharges b, are integers z,, and Tt are trivial. An example of the 
disclination with the topological charge (CO, 1,O) is pictured in figure 4. 

(a1 
- - - / - / I \ \ - - -  
& - - / / !  \ \  - & - 
- - - A ' \ \ - - -  ---\,?,/--- 
A - -  \ \ I , / / -  - - 
Figure 4. Line disclination with the topological charge (CO, 0, 1) in a biaxial nematic liquid 
crystal. In the disclination core a ball defect is present. ( a )  Side view. ( b )  Top view. 

\ I / ' -  - - -- \  - 

Let us discuss now heterophase GFC in the theory with the broken gauge symmetry 
(24), where the group G ,  = SU(3) (by A I , .  . . , A 8  we mean the generators of the group 
SU(3)), and the group Gz = U(2) (the generators of the group U(2) are A1/2, A2/2, 
A 3 / 2 ,  A,) while for group G3 the following subgroups of the group U(2) will be used: 
the group Us( 1) (the generator A s )  and the group U3( 1) (the generator A3/2). Detailed 
consideration of the above gauge theory may be found in [37]. 
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Due to the formula ( 2 6 ) ,  caused by the analogy between schemes for calculating 
the topological charges of OPC and GFC (see section 2 )  we obtain after some algebra 
the topological charge of string-like GFC with rn intracore ball monopoles to be the 
integer set ( z ~ , .  . . , z,+,) in both cases (G, = U8(1) and C, = U,( 1)). In this event the 
subcharges pi = zi, while a and yi are trivial. 

Strings with the trivial subcharge a can be unstable with respect to spreading string 
cores. The analysis of this problem is beyond the scope of the present paper. 

4. Concluding remarks 

Thus, the schemes for calculating the topological charges of heterophase OPC and GFC 

have many similar features. This allows the results of the topological theory of 
heterophase OPC to be effectively used in studying the topological characteristics of 
heterophase GFC (given the changes of types (17), (26)) and vice versa. The topological 
charges for heterophase OPC are defined by the structure of the DS characterising the 
phases of a condensed medium. The charges of heterophase GFC are caused by the 
structure of gauge groups describing the local symmetries being inherent to the phases 
of a gauge field system. Both line defects with intracore ball defects in superfluid 
,He-A and string-like GFC with intracore ball monopoles in the SU(3) gauge theory 
are characterised by topological charges which are sets of integers. For string-like 
disclinations in biaxial nematic liquid crystals the topological charge consists of integers 
and the subcharge a' which is a non-trivial class of the quaternion group elements. 
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